On the comparison theorem for elementary irregular D-modules
نویسندگان
چکیده
منابع مشابه
GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملthe evaluation and comparison of two esp textbooks available on the iranian market for teaching english to the students of medicine
abstract this study evaluated and compared medical terminology and english for the students of medicine (ii) as two representatives of the textbooks available on the iranian market for teaching english to the students of medicine. this research was performed on the basis of a teacher’s and a number of students’ attitudes and the students’ needs analysis for two reasons: first, to investigate...
15 صفحه اولA vanishing theorem for a class of logarithmic D-modules
Let OX (resp. DX) be the sheaf of holomorphic functions (resp. the sheaf of linear differential operators with holomorphic coefficients) on X = C. Let D ⊂ X be a locally weakly quasi-homogeneous free divisor defined by a polynomial f . In this paper we prove that, locally, the annihilating ideal of 1/f over DX is generated by linear differential operators of order 1 (for k big enough). For this...
متن کاملgeneralized principal ideal theorem for modules
the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1996
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000005547